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The carbonyl-ene reaction continues to be a powerfatCbond Table 1. Ene Reaction with 1,1-Disubstituted Olefins (eq 3)

forming reactiort The first catalytic enantioselective variant using o H 5 mol% 4 CHz) i
i H olefin 4 N, ——> n

a chiral alumnnur_n BINOL complex was reported by Yamam%)t_o. 1,6-8 HJW/ Ph  GH,Cl,, 4A MS, 1t
Subsequently, Mikami and others have reported the use of titanium- O 2b 1b, 6b - 8b
based BINOL complexes as ef_ficient catalysts for the carbenyl Sefin product ce%® yield% mp°C
ene reactiol* Other metal cations that have also been used to on
effectively catalyze the asymmetric carbonghe reaction include Me  1:R=Ph N b 92 73 115
complexes derived from Co,Pdé Pt/ Cr8 Cu? and several R 6:R=Me R Ph ep  gap 78 68

lanthanided® The purpose of this Communication is to report that

chiral scandium(lll) complexed and 5 are effective carbonyi =1 OH H b 94 99 80
ene catalysts that afford excellent diastereoselectivities with trisub- (CHZ/):\[\ CH@\/:WN\%

stituted olefins (eq 1). While there have been isolated reports in 8:n=2 8b 94 89 B

the literature of diastereoselective, carbenghe reactions, these

transformations have not been systematically expléréé: 1! a Enantiomeric excesses were determined by HPLC using Chiracel OD-H
or AD-H columns.? Absolute stereochemistry was determined by Mosher
ester analysis. Remaining product configurations were assigned by analogy.

Me o) OH
A A
+ —_— I ] Next, we were able to demonstrate that the catalyst was capable

R ° of regioselective discrimination of substituents found on unsym-
metrical, 1,1-disubstituted olefins (eq 4). Steric considerations seem

to be the dominant factor in determining selectivity since the use
)S( of bulkier substituents led to increased regioselectivities. In each
of these three cases, the product containing a terminal olefin was

2a, X = OEt preferentially formed over the more highly substituted alkene.
2b, X = NHPh

\ OH H
R! AN
0 M Ph
N—Sc—N N_SC_N Me o H R? O 9a-11a
R! | 5 mol% 4
OTf Ph TfO OTf OTf Ph . N. ——— RI__R? 4)
H Ph  CH,Cly, rt OH H

5 9-11 o] 2 N
2b Me Ph
We have previously documented the utility of chiral scandium O 9b-11b
pybox? complexes as effective Lewis acids exhibiting good 9:R'=iPr,R2=H 94% ee, 78% yield, 4:1 9a/9b
chelating potential® More recently, the application of these 10:R'=R2=Me 96% ee, 60% yield, 5.3:1 10a/10b
complexes to the catalysis of the Nazarov reaction has beent1:R'=tBu,R?=H 94% ee, 81% yield, >99:1 11a/11b

reported* These results suggested that trivalent scandipgibox

complexes might be effective promoters of the asymmetric,  Trisubstituted olefinic substrates introduce the possibility of

carbonyt-ene reaction. Accordingly, a survey of these complexes simultaneously incorporating a second vicinal stereogenic center

was conducted to evaluate the reaction betweeanethylstyrene (eq 1). We were initially disappointed that the reaction of 2-methyl-

(2) with either ethyl glyoxylateZa) or N-phenyl glyoxamide Zb) 2-butene {2), under standard conditions with compléxyielded

(eq 2)5 From this screen, complexdsand5 surfaced as attractive  a 5:1 syn:anti mixture of diastereomers (97% ee). However, we

catalysts for reactions with olefins and glyoxamle A benefit were pleased to discover that the related §8Phpybox)](OTf}

of using phenyl glyoxamide as the carbonyl component is that the complex5, in the reaction ofL2 with 2b, afforded the ene product

desired products are routinely isolated as crystalline solids, a in high diastereoselectivity while simultaneously maintaining excel-

desirable attribute for large-scale reactions. This is the principal lent enantiomeric excesses (13:1 syn:anti, 94% ee, Table 2).

motivation for using this substrate in the present study. Similarly, the reactions of 3-ethyl-2-pentene, ethylidene cyclohex-
Under optimized reaction conditions, a representative number ane, ethylidene cyclopentane, and 2-methyl-2-pentene 2i3th

of 1,1-disubstituted olefins were evaluated (Table 1). Good yields catalyzed by comple%, afforded products with good syn selectivi-

and high enantiomeric excesses {®32% ee) were observed for  ties and high enantiomeric excesses. Once again, all products were

each of the products formed when usingnethylstyrene, isobu- isolated as crystalline solids. This present methodology is comple-
tylene, methylenecyclohexane, and methylenecyclopentane as numentary to the anti-selective, Cu(ll)-catalyzed glyoxytet@e reac-
cleophiles. All products were isolated as crystalline solids. tion previously reported by our grodpThis represents one of a
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Table 2. Ene Reaction with Trisubstituted Olefins (eq 5)

" N 5mol% 5 (CH’,)- .| OH H
olefin  + H)H(N‘Ph _— 2n. NNy ©
12-16 I CHCLdAMSH ) 66 % o
olefin product ee %? yield% dr mp°C
R (Me)H OH H
12:R=Me I = 120 eac 78 131 104
R R™ Y “Ph
Me 13:R=Et Me O 13b 99 76 241 67
OH H
(CH2)n 14:n=1 (CHyp | SN 14b 98 82 931 134
h : P 15b 98 78 9.3:1 133
Me15: n=2 Me O .3
Me OH H
: . !
Me™ X 16 RMN\P“ 16b 96 58 91 87
Et Et O

obtained in the Sc(lll)-catalyzed reaction betwédmand acyclic
allylsilanes. This transformation affords the anti diastereomers in
good yields and selectivities (eq 9). Further studies on both of these
processes are ongoing.

10-15 mol% 4 or 5 OH 'ﬁ
N DCM, 4A MS N\Ph ©
T™S ' R O
19: R = Me 19b: 94% ee, 15:1 anti:syn, 71% yield

20: R=Ph 20b: 99% ee, >99:1 anti:syn, 68% yield

The N-phenylcarboxamides employed in this study may be

readily activated for either hydrolysis or transesterification through
their derivedN-Boc imide analogues or through amide nitrosatfon.
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reactions between glyoxylate derivatives and unactivated ol¥fins.
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capable of simultaneously providing both regio- and diastereose-

lectivity. When olefin17 was subjected to the standard reaction References

conditions with catalysh, 17bwas produced in excellent enantio-
and diastereoselectivity (eq 6). When the same reaction was carried
out with its geometric isomefd8, 18b was also generated in
excellent enantio- and diastereoselectivity (eq 7). In both of these
experiments, we did not detect the presence of any regioisomeric
products. The major product produced in both cases corresponds
to proton transfer from thes-cis substituent through an exo
transition stat€' (eq 8). The fact that regioselectivities are
significantly enhanced when unsymmetrical trisubstituted olefins
(egs 6 and 7) are utilized suggests that the extra methyl group
provides an important stereochemical control element in the
transition state. The comparison of these results to the lower
regioselectivities observed with 1,1-disubstituted olefins (eq 4) is
noteworthy.
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In our previous study of the glyoxylate ene reaction with the
cationic [Cu{-BuBox)](Sbk), complexes, a general preference for
endo transition states was observdtl.is thus significant that a
predisposition for exo transition states has been observed with
scandium comple.

As a complement to the present study, we have also found that
convenient access to the anti glyoxylate ene-type adducts may be
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